
A Procedure for Verifying Security Against Type Confusion Attacks

Catherine Meadows
Code 5543

Naval Research Laboratory
Washington, DC 20375

meadows@itd.nrl.navy.mil

Abstract

A type confusion attackis one in which a principal ac-
cepts data of one type as data of another. Although it has
been shown by Heather et al. that there are simple for-
matting conventions that will guarantee that protocols are
free from simple type confusions in which fields of one type
are substituted for fields of another, it is not clear how well
they defend against more complex attacks, or against at-
tacks arising from interaction with protocols that are for-
matted according to different conventions.

In this paper we show how type confusion attacks can
arise in realistic situations even when the types are explic-
itly defined in at least some of the messages, using examples
from our recent analysis of the Group Domain of Interpreta-
tion Protocol. We then develop a formal model of types that
can capture potential ambiguity of type notation, and out-
line a procedure for determining whether or not the types of
two messages can be confused. This work extends our ear-
lier work on the subject in that it includes an explicit model
of attacker and defender and extends the informal model of
the type confusion attack in terms of a game between an in-
truder and a set of honest principals in or earlier work to a
more formal model in which actions of intruder and honest
principals are described explicitly. This gives us a simpler,
more intuitive approach that allows us to calculate proba-
bilities in a more systematic manner, and to compare differ-
ent intruder strategies and different assumptions about the
way in which the protocol is implemented in terms of their
effects on type confusion.

1 Introduction

Type confusion attacks arise when it is possible to con-
fuse a message, which we will refer to as themasquerad-
ing message, containing data of one type with a message,
which we will refer to as thespoofed message, containing
data of another. The most simple type confusion attacks are

ones in which fields of one type are confused with fields
of another type, such as is described in [9], but it is also
possible to imagine attacks in which fields of one type are
confused with a concatenation of fields of another type, as
is described by Snekkenes in [12], or even attacks in which
pieces of fields of one type are confused with pieces of fields
of other types.

The technique of tagging data with its type has been
shown to provide security against simple type confusion at-
tacks involving the confusion of one field with another in
the Dolev-Yao model [5], and we believe that these tech-
niques could easily be extended to more complex type con-
fusion attacks (see [10] for a discussion). But, although
a tagging technique may work within a single protocol in
which the technique is followed for all authenticated mes-
sages, it does not prevent type confusion of a protocol that
uses the technique with a protocol that does not use the tech-
nique, but that does use the same authentication keys. Since
it is not uncommon for master keys (especially public keys)
to be used with more than one protocol, it may be necessary
to develop other means for determining whether or not type
confusion is possible. In this paper we explore these issues
further, and describe a procedure for detecting the possibil-
ity of the more complex varieties of type confusion.

The remainder of this paper is organized as follows. In
Section Two, in order to motivate our work, we give a brief
account of a complex type confusion flaw that was recently
found during an analysis of the Group Domain of Authen-
tication Protocol, a secure multicast protocol being devel-
oped by the Internet Engineering Task Force. In Section
Three we give a formal model for the use of types in proto-
cols that takes into account possible type ambiguity. This is
similar to an earlier one we developed in [10], except that it
takes into account the causal order among message fields as
well as the order in which they appear in a message. In Sec-
tion Four we develop the notion of a type confusion attack
as a game between an intruder and a set of honest princi-
pals. We use this notion of a game to develop what we call
thegap-toothed zipper, a generalization of the zipper proce-

green
Text Box
NRL Release Number 03-1221.1-0344



dure developed in [10]. We show how the gap-toothed zip-
per can be used to compare different intruder strategies and
help determine whether or not a successful strategy exists.
In Section Five we conclude the paper and give suggestions
for further research.

2 The GDOI Attack

In this section we describe a type flaw attack that was
found on an early version of the GDOI protocol [2].

The Group Domain of Interpretation protocol (GDOI),
is a group key distribution protocol that is undergoing the
IETF standardization process. It is built on top of the
ISAKMP [8] and IKE [4] protocols for key management,
which imposes some constraints on the way in which it is
formatted. GDOI consists of two parts. In the first part,
called the Groupkey Pull Protocol, a principal joins the
group and gets a group key encryption key from the Group
Controller/Key Distributor (GCKS) in a handshake protocol
protected by a pairwise key that was originally exchanged
using IKE. In the second part, called the Groupkey Push
Message, the GCKS sends out new traffic encryption keys
protected by the GCKS’s digital signature and the key en-
cryption key.

Both pieces of the protocol can make use of digital sig-
natures. The Groupkey Pull Protocol offers the option of in-
cluding a Proof-of-Possession field, in which either or both
parties can prove possession of a public key by signing the
concatenation of a nonce NA generated by the group mem-
ber and a nonce NB generated by the GCKS. This can be
used to show linkage with a certificate containing the public
key, and hence the possession of any identity or privileges
stored in that certificate.

As for the Groupkey Push Message, it is first signed by
the GCKS’s private key, and then encrypted with the key
encryption key. The signed information includes a header
HDR, (which is sent in the clear), and contains, besides the
header, several different types of message payload, and it
ends in a Key Download Payload which will generally end
in a random number (the key).

According to the conventions of ISAKMP, HDR must
begin with a random or pseudo-random number. In pairwise
protocols, this is jointly generated by both parties, but in
GDOI, since the message must go from one to many, this is
not practical. Thus the number is generated by the GCKS.
Similarly, it is likely that the Key Download message will
end in a random number: a key. Thu it is reasonable to
assume that the signed part of a Groupkey Push Message
both begins and ends in a random number.

We found two type confusion attacks. In both, we as-
sume that the same private key is used by the GCKS to sign
POPs and Groupkey Push Messages. In the first of these,
we assume a dishonest group member who wants to pass

off a signed POP from the GCKS as a Groupkey Push Mes-
sage. To do this, she creates a fake plaintext Groupkey Push
Message GPM, which is missing only the last (random) part
of the Key Download Payload. She then initiates an in-
stance of the Groupkey Pull Protocol with the GCKS, but
in place of her nonce, she sends GPM. The GCKS responds
by appending its nonce NB and signing it, to create a signed
(GPM,NB). If NB is of the right size, this will look like a
signed Groupkey Push Message. The group member can
then encrypt it with the key encryption key (which she will
know, being a group member) and send it out to the entire
group.

The second attack requires a few more assumptions. We
assume that there is a group member A who can also act
as a GCKS, and that the pairwise key between A and an-
other GCKS, B, is stolen, but that B’s private key is still
secure. Suppose that A, acting as a group member, initiates
a Groupkey Pull Protocol with B. Since their pairwise key
is stolen, it is possible for an intruder to insert a fake nonce
for B’s nonce NB. The nonce he inserts is a fake Groupkey
Push Message GPM’ that it is complete except for a prefix
of the header consisting of all or part of the random number
beginning the header. A then signs (NA,GPM’), which, if
NA is of the right length, will look like the signed part of
a Groupkey Push Message. The intruder can then find out
the key encryption key from the completed Groupkey Pull
Protocol and use it to encrypt the resulting (NA,GPM’) to
create a convincing fake Groupkey Push Message.

A more complete account of both these attacks may be
found in [16].

Fortunately the fix was simple. Although GDOI was
constrained by the formatting required by ISAKMP, this
was not the case for the information that was signed within
GDOI. Thusrrr the protocol was modified so that, when-
ever a message was signed within GDOI, information was
prepended saying what the purpose was (e.g. a member’s
POP, or a Groupkey Push Message). This eliminated the
type confusion attacks.

There are several things to note here. The first is that
existing protocol analysis tools are not very good at find-
ing these types of attacks. Most assume that some sort of
strong typing is already implemented. Even when this is not
the case, the ability to handle the various combinations that
arise is somewhat limited. For example, we found the sec-
ond, less feasible, attack automatically with the NRL Pro-
tocol Analyzer, but the tool could not have found the first
attack, since the ability to model it requires the ability to
model the associativity of concatenation, which the NRL
Protocol Analyzer lacks. Moreover, type confusion attacks
do not require a perfect matching between fields of differ-
ent types. For example, in order for the second attack to
succeed, it is not necessary for NA to be the same size as
the random number beginning the header, only that it be



no longer than that number. Again, this is something that
is not within the capacity of most crypto protocol analy-
sis tools. Finally, most crypto protocol analysis tools are
not equipped for probabilistic analysis, so they would not
be able to find cases in which, although type confusion
would not be possible every time, it would occur with a
high enough probability to be a concern.

The other thing to note is that, as we said before, even
though it is possible to construct techniques that can be used
to guarantee that protocols will not interact insecurely with
other protocols that are formatted using the same technique,
it does not mean that they will not interact insecurely with
protocols that were formatted using different techniques, es-
pecially if, in the case of GDOI’s use of ISAKMP, the pro-
tocol wound up being used differently than it was originally
intended (for one-to-many instead of pairwise communica-
tion). Indeed, this is the result one would expect given pre-
vious results on protocol interaction [7, 1]. Since it is to
be expected that different protocols will often use the same
keys, it seems prudent to investigate to what extent an au-
thenticated message from one protocol could be confused
with an authenticated message from another, and to what
extent this could be exploited by a hostile intruder. The rest
of this paper will be devoted to the discussion of a procedure
for doing so.

3 The Model

3.1 Overview

In this section we will describe the model that underlies
our procedure. It is motivated by the fact that different prin-
cipals may have different capacities for checking types of
messages and fields in messages. Some information, like
the length of the field, may be checkable by anybody. Other
information, like whether or not a field is a random number
generated by a principal, or a secret key belonging to a prin-
cipal, will only be checkable by the principal who generated
the random number in the first case, and by the possessor(s)
of the secret key in the second place. In order to do this, we
need to develop a theory of types that take differing capac-
ities for checking types into account. In Section 3.2 we set
forth our basic theory of types. In Section 3.3 we show how
we construct messages out of types.

3.2 Types

We assume an environment consisting of principals who
possess information and can check properties of data based
on that information. As in the Dolev-Yao model, we assume
principals are either honest, in which case they obey the
rules of whatever communication protocols are defined, or

dishonest, in which case they are in league with an intruder
who is trying to implement a type confusion attack.

Definition 3.1 A field is a sequence of bits. We let� denote
the empty field. Ifx andy are two fields, we letxjjy denote
the concatenation ofx andy.

Definition 3.2 A type is a variable whose range is a set of
fields, which can include the empty field. Aprobabilistic
type is a random variable whose range is a set of fields. A
type member choiceis the act of choosing a member of a
type ( according to its probability distribution, if one exists)
by a principal engaging in the protocol. We say that a type
is under the control of a principalA if A is the principal
who performs the type member choice.

For the purposes of this paper, we will assume that any
finite-domain type generated by a pseudo-random number
generator (under which we will include cryptographic op-
erations such as encryption, MACs, digital signatures, etc.)
that is under the control of an honest principal is given a
uniform distribution over its domain. We do not rule out as-
signments of distributions that correspond more closely to
cryptographic assumptions, however, and this is something
we intend to investigate more closely in the future.

We assume that each type is under the control of a single
principal who may be either an honest principal or the in-
truder. If a type is under the control of an honest principal,
it chooses a member of that type according to the rules of
the protocol. On the other hand, there are actually two ways
in which a type can be under the control of the intruder. The
first way is directly. For example, suppose that the intruder
sends a principal a nonceNI , and the principal produces the
messageSA(NA; NI). Then the value ofNI is directly con-
trolled by the intruder. Suppose on the other hand that the
principal is expecting to receive a messageSB(NA; NB)
where all it knows aboutNB is that it is lengthN . If the
intruder could trickB into producing someSB(NA; X) ,
whereX is some other term of lengthN , then the intruder
would have trickedA into acceptingX as of the same type
asNB . Here, the intruder may not have complete control of
the type, since it may not be able to trickB into accepting
all strings of lengthN , but it does have some control. We
will say that the type is under indirect control of the intruder
in this case.

We assign probability distributions to types according to
whose control they are under, and how. If a type is under
the control of an honest principal, then the probability dis-
tribution is defined by the rules of the protocol. If the type is
under the direct control of the intruder, then the probability
distribution is initially undefined, but will be chosen by the
intruder to maximize the likelyhood of a type confusion at-
tack. If the type is under the indirect control of the intruder,
then no probability distribution is associated with that type.



Rather, the value of the type is determined by the values of
the variables it is being matched against in a type confusion
attack.

We now consider what an honest principalA who re-
ceives a fieldx that is supposed to be in the domain of a
typeT is able to tell about it. IfT is under the control of
A itself, thenA will be able to tell, not only whether orx
belongs toT , but whether or notx was the value thatA
chose. On the other hand, ifA receives a fieldx purport-
ing to come from the domain of aT under the control of
an intruder, than allA can tell is whether or notx is in the
domain ofT .

The domain of a type, fromA’s point of view, will also
depend onA’s own individual knowledge. For example,
suppose thatA receives a MAC computed over a message
M . If the MACF is computed using a keyK thatA knows,
thenA will be able to verify that the MAC was computed
overM usingK. If A does not knowK thenA will only be
able to verify syntactic properties ofF such as the length.

This leads us to the following definition.

Definition 3.3 We say that a typeT is local toA if A is able
to verify membership in the domain of the type.

Note that, if a type local toA is also under the control of
an honest principalB, thenA should be able to verify, not
only membership in the domain of the type, but whether or
not a member of that type was chosen byB.

We are now ready to consider the roles that types play in
a type confusion attack. LetM1 be a masquerading mes-
sage constructed by an honest principalA, and letM2 be a
spoofed message expected byB. FromA’s point of view,
M1 will be constructed from the following types:

1. types controlled byA,

corresponding to data that it generated itself;

2. types controlled by other honest principals,

corresponding to data it received from other honest
principals, and whose origin and purpose it is able to
verify;

3. and types directly controlled by the intruder,

corresponding to data that it received received whose
origin and purpose it is unable to verify, either because
it came from a dishonest principal, or because it was
not authenticated, or because the authentication failed.

On the other hand, fromB’s point of viewM2 will be con-
structed from

1. types controlled byB,

corresponding to data that it generated itself that it is
expecting to see inM2;

2. types controlled by other honest principals,

corresponding to data it is expecting to see inM2 that
it received from other honest principals previous to re-
ceivingM2, and whose origin and purpose it is able to
verify;

3. types directly controlled by the intruder,

corresponding to data it is expecting to see inM2 that
it received from elsewhere previous to receivingM2,
but whose origin and purpose it is unable to verify;

4. and types indirectly controlled by the intruder,

corresponding to data that it is seeing now for the first
time

.
Let A be an honest principal. Here are some examples

of the types local toA that we will be interested in.

1. Random number of lengthN .

If this is a type under the control of an honest principal,
it will be the set of all numbers of lengthN , together
with the uniform distribution. If it is under the direct
control of the intruder, it will be the set of all numbers
of lengthN with an undefined probability distribution.
If it is under the indirect control of the intruder, it will
be the set of all numbers of lengthN .

2. Public key belonging to a designated princpalB.

This is a type consisting of one member.

3. Digital signature on a messageM using a public key
P .

This is a type whose domain is the set of all expres-
sionsE satisfying the digitial signature relationship
with M andP . Note that, if the signature scheme is
deterministic, this will have only one member. If the
type is under the control of an honest principal, the
distribution will be uniform overE.

4. MAC taken over a messageM , using a keyK thatA
knows.

This is a type uniformly distributed over the set of all
expressionsE satisfying the MAC relation withK and
M . Again, if the MAC is deterministic, this will have
ony one member. If the type is under the control of an
honest principal, the distribution will be uniform over
E.

3.3 Type Function Trees

We are now ready to use types to construct messages.
The most obvious way would be to represent messages as



lists of types. However, this is not adequate, because the
types that may be used in a message may depend on choices
made previously for other fields in that or other messages.
Consider the following example:

Example 3.1 Let M be the message created byA of the
form [\nonce00; N;NONCEA], whereNONCEA is a
nonce of lengthN . The type ofNONCEA is the set of
numbers of lengthN , and so depends upon the second field
of the message. On the other hand, suppose thatA com-
putesNONCEA, and sends it toB, who computes the
message[\nonce00; N;NONCEA], whereN is the length
of NONCEA. In that case the integerN depends on
NONCEA.

We formalize the dependence of later choices of types
upon previous choices by defining the notion of a type func-
tion tree as follows:

Definition 3.4 A type function treeis a functionR from
lists of fields to types, such that:

1. The empty listhi is inDom(R);

2. The list of fieldshx1; : : : ; xki is in Dom(R) if and
only if hx1; : : : ; xk�1i 2 Dom(R) and xk 2
R(hx1; : : : ; xk�1i);

3. There exists an integerh, called theheight ofR, such
that for anyn > h, R(hx1; : : : ; xni) = f�g where� is
the empty string.

We letRk denote the restriction of R to k-tuples.

The order in which types appear in a type function tree
should reflect the temporal order in which types are chosen
and the causal relationship between types, not necessarily
the order in which they appear in a message. We thus need
to define the relationship between a type function tree and
the message it represents as follows:

Definition 3.5 Let R be a type function tree of heighth.
Let � be a map fromh1; : : : ; qi onto someh1; : : : ; hi. We
say thatM is a message typeconstructed fromR via � if
M consists of all fields of the formy1jj : : : jjyq such that
there exists anhx1; : : : ; xhi in the domain ofRh such that
yi = xj wheneverj = �(i). We call� a message surjection.

Thus, in Example 3.1 the first message type is con-
structed via the identity function, while the second is con-
structed via a� defined as�(1) = 1; �(2) = 3, and
�(3) = 2.

We note, in particular, that ifR is a type function tree
correspondng to a spoofed message, then all types under in-
direct control of the intruder should appear at the end of the
tree. This is because the members of these types are not

chosen until the spoofed message is matched with a mas-
querading message, while the members of the other types
will have been chosen prior to a principal’s receiving a mas-
querading message.

Our purpose in constructing type function trees will, of
course, be the construction of messages of one type that can
be mistaken for messages of another type. Consider, for
example, the following protocol:

Example 3.2 We consider two instances of a simple
challenge-response protocol:

1. A ! B : NA; whereNA is an abitrary nonce of
lengthN ;

2. B ! A : NB ; SB(NA; NB); whereNB is an arbi-
trary nonce of lengthN ;

3. A ! B : SA(NB ; N
0
A); whereN 0

A is an arbitrary
nonce of lengthN ;

and

1. B ! A : N 00
B;

2. A! B : N 00
A; SA(N

00
B ; N

00
A);

3. B ! A : SB(N
00
A; N

000
B )

We want to see if it is possible to trickA into accepting
a second message from an honest principalB in the first
instance of the protocol as a third message fromB in the
second instance of the protocol. That is, we want to see if it
is possible to trickA into accepting a messageSB(X;NB),
as one of the formSB(N 00

A; Y ), whereX andY are supplied
by the intruder. At first this seems easy; we letX = N 00

A

and then we getY = NB . Suppose thatN 00
A is generated,

and learned by the intruder, beforeX andNB is generated
beforeY . SinceY is generated afterN 00

A andX beforeNB ,
this gives us a possible type function tree as follows:

1. R(hi) = N 00
A

N 00
A is a type under control ofA consisting of all inte-

gers of a fixed lengthN , uniformly distributed.

2. R(hx1i) = X

X is a type under direct control of the intruder. It cor-
responds to the first field in the signed part of the sec-
ond message of the protocol.

3. R(hx1; x2i) = NB

NB is a type under control ofB consisting of all inte-
gers of lengthN , also uniformly distributed.

4. R(hx1; x2; x3i) = Y

Y is a type under indirect control of the intruder. It
corresponds to the first field in the signed part of the
third message of the protocol.



5. R(hx1; x2; x3; x4i) = �

We begin by havingA choose a fieldx1 randomly from
N 00
A. Clearly, the only strategy available to the intruder is to

choosex2 = x1, which, sincex1 has already been revealed,
can be done with probability one. We next letB choosex3
randomly fromNA. Once that is done, we can letx4 = x3.

On the other hand, suppose that the intruder generates
X before learningN 00

A. In that case the type function tree
could be defined as follows:

1. R(hi) = X

2. R(hx1i) = NB

3. R(hx1; x2i) = N 00
A

4. R(hx1; x2; x3i) = Y

5. R(hx1; x2; x3; x4i) = �

where the types are defined as above. We now begin by
having the intruder choose a fieldx1 from X according to
some probability distribution� andB choosex2 randomly
fromNB . But now whenA choosesx3 randomly formN 00

A

the probability thatx3 = x1 is only1=2N . Thus, the prob-
ability of a successful type confusion attack changes from
certain to negligible, no matter what the choice of� is.

We see from the above examples that we can think of
the intruder’s attempt to pass off a message of one type as a
message of another type as a game between the intruder and
the honest principals. The intruder and the honest principals
choose various members of types in a type function tree, ac-
cording to whether the type is under control of the intruder
or an honest principal. If the honest principal is doing the
choosing, it uses the probability distribution specified in the
protocol. If the intruder is doing the choosing directly, it
uses a strategy most likely to maximize the probability of
one message being accepted as another. If the type is under
the indirect control of the intruder we attempt to determine
if there is any value satisfying the constraints of the type
that will make the two messages equal. In the next section,
we will formalize this and make it explicit.

4 Type Confusion Games

In this section we show how we can model an attempt by
an intruder to convince an honest principalA to construct
a masqerading message that can be accepted as a spoofed
message by an honest principalB in terms of a game be-
tween the intruder and the honest principals. We also de-
scribe a procedure, similar to the “zipper” described in [10]
for verifying that no type confusion attack is possible, and
for narrowing down the search for type confusion attacks if
one is possible.

We start by bulding a type function tree that represents
the construction of both masquerading and spoofed mes-
sages. This is because, as was made clear in our discussion
of Example 3.2, we need to keep the relative timing of the
creation of the various fields of the two messages straight.
However, we also need to describe the two messages as type
function trees. We describe how to build a type function tree
out of two type function trees as follows:

Definition 4.1 Let R1 andR2 be two type function trees
of height h1 and h2, respectively. We define aninter-
leaving I of R1 and R2 inductively as follows. Let�1
and �2 be monotone increasing injections ofh1; : : : ; h1i
andh1; : : : ; h2i, respectively intoh1; : : : ; hi, such that each
member ofh1; : : : ; hi is in the image of�1 or �2.

1. If 1 is in the image of�i, we defineI(hi) = Ri(hi).

2. Suppose thatI(hx1; : : : xk�1i) = T , and that k
is in the image of�i. For eachxk 2 T we de-
fine I(hx1; : : : ; xki) to beRi(hxj1 ; : : : ; xjti), where
hj1; : : : ; jti is the maximal subsequence ofh1; : : : k �
1i in the image of�i.

We leave it as an exercise to the reader to show that an
interleaving of two type function trees is a type function
tree if the images of�1 and�2 are disjoint or ifRi

1 = Rj
2

whenever�1(i) = �2(j).
The reason we allow the possibility of�1(i) = �2(j)

is that the two messages might make use of common data.
For example, consider a protocol, such as the Internet Key
Exchange protocol, which operates in two stages, the first
in which principals establish (among other things) data that
will appear in the headers of any messages passed in the
second stage. If we then want to compare two messages
passed in the second stage, we might want to make use of
the fact that they contain this common information that was
created in the first stage.

The purpose befind the definition of an interleaving of
two type function trees is to preserve the causal ordering
of data in two messages. If the choice of a member of a
typeX influences the choice of a member of a typeY in
another, thenX should precedeY in the interleaving of the
two trees. In particular, types under indirect control in the
spoofed message will always come after any type from a
masquerading message, since the choice of the members
of the types under indirect control of the intruder in the
spoofed message will be determined by the choices of the
members of the types in the masquerading message. Since
moreover types under indirect control of the intruder come
last in the spoofed message function tree, we conclude that
types under indirect control of the intruder come last in the
interleaved type function tree.

We are now finally ready to define a type confusion game
between the intruder and the honest principals in a protocol.



Definition 4.2 LetS1 andS2 be two type function trees of
heighth1 andh2 respectively, and corresponding to mas-
querading message and spoofed message respectively. Let
�1 and �2 be the message surjections fromh1; : : : t1i to
h1; : : : h1i and fromh1; : : : t1i to h1; : : : h1i, respectively,
belonging toS1 andS1,. LetI be a an interleaving ofS1
andS2. We define atype confusion gamebetween the in-
truder and the honest principals as follows:

1. If I(hi) is a type under control of an honest principal,
let p1 be the probability distribution associated with it.
For each memberx1, let q(hx1i) = p1(x1).

2. If I(hi) is a type under direct control of the intruder,
choose a probability distribution�1 and choose a mem-
berx1 of I(�). Letq(hx1i) = �1(x1).

3. Suppose thathx1; : : : ; xki have already been chosen,
and that I(hx1; : : : ; xki) is a type under the con-
trol of an honest principal. Letpk+1 be the prob-
ability distribution associated withI(hx1; : : : ; xki).
Then for each memberxk+1 of I(hx1; : : : ; xki), let
q(hx1; : : : ; xki) = pk+1(xk+1)).

4. Suppose thathx1; : : : ; xki have already been cho-
sen, and thatI(hx1; : : : ; xki) is under the direct con-
trol of the intruder. Choose a probability distri-
bution �k+1 on I(hx1; : : : ; xki). For each member
xk+1 of I(hx1; : : : ; xki), let q(hx1; : : : ; xk+1i) =
�k+1(xk+1).

5. Suppose thathx1; : : : ; xki have already been chosen,
and thatI(hx1; : : : ; xki) is under the indirect con-
trol of the intruder. Then choose a memberxk+1 of
I(hx1; : : : ; xki). Let qk+1(hx1; : : : ; xk+1i) be 1, and
qk+1(hx1; : : : ; xk ; yi) be 0 for all other members of
I(hx1; : : : ; xki).

We define astrategyfor the intruder to be a choice of
probability distributions for the types under the intruder’s
direct control and members of types under the intruder’s
indirect control, which may be dependent upon previous
choices made by the honest principals.

Given a strategyST (that is, a particular choiceST of
probability distributions and type members), we letQST be
the probability distribution defined byQST (hx1; : : : xhi) =Qh

i=1 q(hx1; : : : xii), whereq is defined as above.
Let p be a number between 0 and 1. We say that the in-

truder has awinning strategy with respect top if there is
some strategyST such that

QST (�x s:t: x�1(1)jj : : : jjx�1(t1)) = x�2(1)jj : : : jjx�2(t2)) �
p:

We now construct a procedure, similar to the “zipper”
defined in [10], for helping to determine if the intruder has

a winning strategy. It is based on the fact that generally,
the intruder’s success in inducing type confusion will de-
pend on which types he tries to match with each other. The
probability of success will thus depend on which types in
the masquerading message overlap with which types in the
spoofed message. This will induce constraints on lengths of
fields in the respective messages. Thus it will be important
to have a complete list of the possible constraints. We do
this by computing all possible length constraints on the two
sequence of message fields being matched, as follows.

Definition 4.3 If x is a bitstring, we letl(x) denote the
length ofx. Let hi1; : : : imi and hj1; : : : ; jni be two sets
of indices. We construct aconstraint treeas follows:

1. The root of the constraint tree is the empty set. We call
this the 0’th level of the tree.

2. The children of the root, referred to as the first level of
the tree, are the nodes

� C1 = fl(xi1 � l(xj1)g

� C2 = fl(xi1) > l(xj1); l(xi1) � l(xj1 ) +
l(xj2)g

...

� Cn = fl(xi1) > l(xj1 + : : :+ l(xjn�1); l(xi1 ) �
l(xj1) + : : :+ l(xjn)g

3. We construct thes + 1’th level of the tree, wheres <
n� 1, as follows. IfD is a node such that the largestv
such thatl(xi1) + : : :+ l(xiv ) � l(xj1 + : : :+ l(xjt)
appears inD for somet is s, construct the child nodes
of D as follows:

� D1 = D [ fl(xi1) + : : : + l(xis+1) � l(xj1 +
: : :+ l(xjt )g� fl(xi1) + : : :+ l(xis) � l(xj1 +
: : :+ l(xjt)g

� D2 = D [ fl(xi1) + : : : + l(xis+1) > l(xj1 +
: : :+ l(xjt ); fl(xi1) + : : :+ l(xis+1) � l(xj1 +
: : :+ l(xjt+1)g

...

� Dn�t = D[ fl(xi1) + : : :+ l(xis+1) > l(xj1 +
: : :+ l(xjn�1); fl(xi1)+ : : :+ l(xis+1) � l(xj1+
: : :+ l(xjn)g

4. We construct then’th level of the tree as follows. Sup-
pose thatD is a node in then� 1’st level such that the
constraintl(xi1)+: : :+l(xin�1) � l(xj1+: : :+l(xjt)
appears inD. Then

� D1 = D[fl(xi1)+ : : :+ l(xin) = l(xj1+ : : :+
l(xm)g�fl(xi1)+ : : :+l(xin�1) � l(xj1+ : : :+
l(xjt)g.



Example 4.1 To see how this works, consider two se-
quenceshx1; x2; x3i and hx4; x5i. The nodes at level one
are:

� D1 = fl(x1 � l(x4)g;

� D2 = fl(x1) > l(x4); l(x1) � l(x4) + l(x5)g.

The nodes at level two are:

� D(1;1) = fl(x1) + l(x2) � l(x4)g;

� D(1;2) = fl(x1 � l(x4); l(x1) + l(x2) >
l(x4); l(x1) + l(x2) � l(x4) + l(x5)g;

� D(2;2) = fl(x1) > l(x4); l(x1) + l(x2) � l(x4) +
l(x5)g.

The nodes at level three are:

� D(1;1;1) = fl(x1) + l(x2) � l(x4); l(x1) + l(x2) +
l(x3) = l(x4) + l(x5)g;

� D(1;2;1) = fl(x1 � l(x4); l(x1) + l(x2) >
l(x4); l(x1) + l(x2) + l(x3) = l(x4) + l(x5)g

� D(2;2;2) = fl(x1) > l(x4); l(x1) + l(x2) + l(x3) =
l(x4) + l(x5)g.

We now need to define what it means for a sequence of
fields to be consistent with a set of inequalities.

Definition 4.4 Let Q be a set of inequalities and equalities
defined in terms of variableshX1; : : : ; XM i. We will say
that a sequence of fieldshx1; : : : ; xri wherer �M is con-
sistent with (or/) Q if the result of substitutingx1 for X1

throughxr for Xr does not imply any contradictions.

We are now ready to define a procedure for verifying se-
curity against type confusion attacks. As we said before, it
is similar to the“zipper” of [10]. The main difference is
that instead of matching up fields according to the order
in which they appear in the message, we match them in a
way consistent with the causal order in which they are com-
puted. This allows us to compute the probability of a suc-
cessful type confusion using the probabilities taken from a
type function tree instead of computing probabilities in an
ad hoc fashion. We refer to this new version of the zipper
as a “gap-toothed zipper”.

We proceed as follows.

Definition 4.5 Let R and S be two type function trees
of heighth1 and h2, respectively, where a masquerading
message is constructed fromR using a function�1 from
h1; : : : t1i onto h1; : : : h1i and a spoofed message is con-
structed fromS using a function�2 from h1; : : : t2i onto
h1; : : : h2i. Let I be an interleaving ofR and S, con-
structed using injections�1 and �2. Let p be a number

between zero and one. We defineZ(I; p), thegap-toothed
zipper overI andp as follows.

Let E be the equationx�1��1(1)jj : : : jjx�1��1(t1) =
x�2��2(1)jj : : : jjx�2��2(t2). Let � be the constraint tree
constructed from the two sequences of indicesh�1 �
�1(1); : : : ; �1 � �1(t1) andh�2 � �2(1); : : : ; �2 � �1(t2). For
each leafC of the constraint tree, construct a sequence of
sets of pairsG(r;C) = (hx1; : : : ; xri; q(hx1; : : : ; xri)) as
follows:

1. We constructG(1;C [ fEg) as follows.

1a. IfI(hi) is a type under control of an honest prin-
cipal LetG(1;C [ fEg) = f(hx1i; phi(hx1i)) j
x1 2 I(hi) ^ x1 / C [ fEgg, wherephi is the
probability distribution associated withI(hi).

1b. If I(hi) is a type under direct control of
a dishonest principal, letG(1;C [ fEg) =
f(hx1i; �hi(x1)) j x1 2 I(hi) ^ x1 /C [ fEgg,
where�hi is the (as yet undefined) probability dis-
tribution associated withI(hi).

Note that by constructionI(hi) cannot be under the
indirect control of the intruder.

2. Suppose thatG(r � 1;C [ fEg) is known. We let
G(r;C [ fEg) be the union of allH(hx1; : : : xr�1i)
such that(hx1; : : : xr�1i; g(hx1; : : : ; xr�1i)) 2 G(r�
1;C[ fEg), whereH(hx1; : : : xr�1i is defined as be-
low.

2a. For each(hx1; : : : xr�1i; g(hx1; : : : ; xr�1i)) in
G(r� 1;C[ fEg) such thatR(hx1; : : : ; xr�1i)
is under the control of an honest principal,
H(hx1; : : : xr�1i) =
f(hx1; : : : xri; g(hx1; : : : xri) j
hx1; : : : ; xri /C [ fEg ^ g(hx1; : : : xri) > 0g

where g(hx1; : : : xri) =
phx1;:::xr�1i(hx1; : : : xri)) � g(hx1; : : : ; xr�1i))
wherephx1;:::xr�1i is the probability distribution
associated withI(hx1; : : : ; xr�1i).

2b. For each(hx1; : : : xr�1h; g(hx1; : : : ; xr�1i)) in
G(r�1;C[fEg) such thatI(hx1; : : : ; xr�1i) is
under the direct control of a dishonest principal,
let g(hx1; : : : xri) = �hx1;:::xr�1i(hx1; : : : xri)) �
g(hx1; : : : xri) where�hx1;:::xr�1i is the (as yet
unknown) probability distribu-
tion associated withI(hx1; : : : ; xr�1i), and let
H(hx1; : : : xr�1i =
f(hx1; : : : xri; g(hx1; : : : ; xri))
j hx1; : : : ; xri /C [ fEg ^ g(hx1; : : : xri))g

2c. For each (hx1; : : : xr�1h; g(x1; : : : ; xr�1)) 2
G(r � 1;C [ fEg) such thatI(hx1; : : : ; xr�1i)
is under the indirect control of a dishon-
est principal, then, if there is a fieldxr 2



I(hx1; : : : ; xr�1i) such thathx1; : : : ; xr�1i/C[
fEg (by construction there is at most one such
xr for eachhx1; : : : ; xr�1i), let g(x1; : : : ; xr) =
g(x1; : : : ; xr�1), and let H(hx1; : : : xr�1i =
f(hx1; : : : xri; g(x1; : : : ; xr))g.

We let�(h;C [ fEg) be the sum of allg(�x) such that
(�x; g) 2 G(h;C [ fEg)

By construction, for each leaf nodeC of the length con-
straint tree, we conclude that�G(h;C [ fEg) is the prob-
ability that there exists a sequencehx1; : : : xhi satisfying
E andC. Let p be a number between 0 and 1. Clearly,
if �G(h;C [ fEg) < p for all C and all choices for the
probability distributions� under the direct control of the in-
truder, then the intruder has no winning strategy. On the
other hand, if there is aC and some choices of� that makes
�G(h;C[fEg) � p, then it may be possible, given certain
assumptions about the length choices of the honest princi-
pals, to find length choices for the intruder that will guaran-
tee consistency withC, and thus produce a winning strat-
egy.

In order to show how such a procedure could work, we
apply it to Example 3.2. This time, however, we relax the
condition that all nonces be the same length, to allow nonces
of any length. Thus, the masquerading message, made out
of types local toB, is of the form(X;NB) whereNB is a
nonce under the control ofA, andX is under the direct con-
trol of the intruder, and the spoofed message, made out of
types local toA, is (N 00

A; Y ), whereN 00
A is under the control

of A andY is under the indirect control of the intruder. We
assume that the honest principals choose the length of the
nonces first, and then choose random nonces of that length.
SinceX is chosen beforeNB we then let the function tree
R for (X;NB) be defined as

1. R(hi) = X

2. R(hz1i) = NB

3. R(hz1; z2i) = �

SinceY is under the indirect control of the intruder, it is
not generated until the spoofed message is received, which
is afterN 00

A. Thus the function treeS is defined as

1. S(hi) = N 00
A

2. S(hy1i) = Y

3. S(hy1; y2i) = �

In this case ,�1 and�2 are both the identity function.
Suppose that we assume that the member ofX is chosen

after the member ofN 00
A. Then, in our construction of the

interleavingI, we have�1 � �1(1) = 2 , �1 � �1(2) = 3 ,
�2 � �2(1) = 1, and�2 � �2(2) = 4.

In this case,E is x2jjx3 = x1jjx4. The length con-
straint tree corresponding to this game has only two leaves:
C1 = fl(x2) � l(x1); l(x2) + l(x3) = l(x1) + l(x4)g,
and
C2 = fl(x2) > l(x1); l(x2) + l(x3) = l(x1) + l(x4)g.

Given a numberp between 0 and 1, we wish to deter-
mine if there is a winning strategy with respect top in the
resulting type confusion game. We will restrict ourselves to
the case in which the intruder and honest principals choose
a length for the values under their direct control (or have
it chosen for them) prior to engaging in the type confusion
game.

We start withC1. This set of length constraints is illus-
trated by the figure below:

x1 = N
00
A x4 = Y

x2 = X x3 = NB

Figure 1. Messages obeying C1 constraints

1. We choosex1 first, which belongs to a type un-
der control ofA. Any choice ofx1 is consistent
with C1 [ fEg, soG(1;C1 [ fEg) is the set of all
(x1; 1=2

l(x1)). Its cardinality is2l(x1).

2. We then choosex2, which belongs to a type under
direct control of the intruder. Ifx1 andx2 obey the
length constraints inC1, then they are consistent with
E if and only if x2 is equal to the firstl(x2) bits of
x1. Thus, the only strategy available to the intruder,
given a particular value ofx1, is to choosex2 equal to
the firstl(x2) bits ofx1. Thus,G(2;C1 [ fEg) is the
set of all such(hx1; x2i; 1=2l(x1)), and its cardinality
is 2l(x1)

3. We now choosex3, which is under control ofB.
The valuesx3 and x1 overlap on the lastl(x1) �
l(x2) bits of x1. Since both values are chosen in-
dependently with uniform distribution, the probabil-
ity of E being satisfied, that is, that the values agree
on thesel(x1) � l(x2) bits, is 1=2l(x1)�l(x2). For
any hx1; x2i consistent withC1 [ fEg, the cardinal-
ity of the set ofx3 consistent with these constraints
is 2l(x3)�l(x1)+l(x2). Since x1 and x3 are chosen
with uniform distribution, we haveG(3;C1 [ fEg) is
the set of all such(hx1; x2; x3i; 1=2l(x1)+l(x3)) where



hx1; x2; x3i is consistent with these constraints, and its
cardinality is2l(x2)+l(x3).

4. Finally, we havex4, under the indirect control of the
intruder. This is set equal to the lastl(x4) bits ofx1.

Thus G(4;C1 [ fEg) is the set
of all (hx1; x2; x3; x4i; 1=2l(x1)+l(x3) such thatx1; x2; x3,
andx4 satisfy the constraints ofC1 [ fEg. Its cardinality
is 2l(x2)+l(x3). Thus, given any fixed choice for the lengths
of x1; x2; x3, andx4 satisfyingC1, the probability of a suc-
cessful type confusion attack is1=2l(x2)�l(x1).

We now look atC2. We assume thatl(x1); l(x2); l(x3),
andl(x4) have been chosen to be consistent withC2. This
set of constraints is given by the figure below:

x1 = N
00
A

x4 = Y

x2 = X x3 = NB

Figure 2. Messages obeying C2 constraints

1. As in the case ofC1, all choices ofx1 are consistent
withC1 [ fEg. ThusG(1;C1 [ fEg) is the set of all
(x1; 1=2

l(x1)), and its cardinality is2l(x1).

2. For each choice ofx1, choosex2, which belongs to
a type under direct control of the intruder. We need
to choose the firstl(x1) bits of x2 equal tox1; the
rest are free. ThusG(2;C1 [ fEg) is the set of all
such(hx1; x2; i; 1=2l(x1)) � �hx1i(x2)). Its cardinality
is 2l(x1)+l(x2)�l(x1) = 2l(x2) The only restriction on
�hx1i so far is that it be nonzero only when the first
l(x1) bits ofx2 are equal tox1.

3. We now choosex3, which is under the direct control
B. According to the length constraints inC2, the value
x3 does not overlap with any of the values previously
chosen, so any choice ofx3 is consistent withE. The
distribution ofx3 is uniform, so we haveG(3;C2 [
fEg) = (hx1; x2; x3i; 1=2

l(x1)+l(x3) � �hx1i(x2)); and
its cardinality is equal to2l(x2)+l(x3)

4. Finally, we setx4, which is under the indirect control
of the intruder, to be equal to the lastl(x2)� l(x1) bits
of x2 concatenated withx3. We thus haveG(4;C2 [
fEg) = f(hx1; x2; x3; x4i; 1=2

l(x1)+l(x3) ��hx1i(x2))g

Summing up all the probabilities fromG(4;C2 [ fEg)
gives a total of 1 no matter what choice of�, as long as it is
nonzero only when the firstl(x1) bits ofx2 equalx1.

5 Conclusion and Discussion

We have presented a formal model and procedure for de-
termining whether or not type confusions are possible in
signed messages in a cryptographic protocol. Our approach
has certain advantages over previous applications of formal
methods to type confusion; we can take into account the
possibility that an attacker could cause pieces of message
fields to be confused with each other, as well as entire fields.
This allows one to determine whether or not there is any
strategy available to the attacker that will raise the probabil-
ity of a successful attack above some predetermined thresh-
old. The approach is an improvement over our previous
work in [10] in that it offers an explicit model of the behav-
ior of attacker and honest principals in terms of a type con-
fusion tree, allowing one to use the probabilities specified
in the tree to compute directly the probability a successful
attack. Moreover, our model, by separating the causal rela-
tionships among types from the order in which they appear
in the messages, allows the user to experiment with differ-
ent assumptions about the causal ordering of message fields,
or about which message fields come from trusted and which
come from untrusted principals.

There are several ways in which this work could be ex-
tended. One would be to extend the method to type func-
tion trees of unbounded height. For arbitrary trees, this will
probably be impossible, but most messages containing an
unbounded number of terms only contain an unbounded list
of fields of the same type, e.g. a message used to deliver
an unbounded number of keys. Thus it may be possible to
develop inductive techniques to deal with this problem.

Another, more longterm goal, is to extend this work to
deal with confusion, not only about the content of messages,
but the way in which they are encrypted or authenticated.
As we see from the work of Bellovin [3] and Stubblebine
and Gligor [13] such type confusion, in particular involving
modes of encryption, can have serious effects on the secu-
rity of a system. In an analogy to our experience with type
confusion of GDOI, we were able to use the NRL Proto-
col Analyzer to reproduce some of Bellovin’s attacks on the
Encapsulating Security Protocol in [15], but we were not
able to use the tool to perform a complete analysis of the
problem. Moreover, the problem becomes somewhat more
complicated than type confusion of message content in that
we may need to consider the interaction between two type
systems, that of the plaintext and that of the ciphertext. It
will be interesting to see if our approach can be extended to
this problem, which has seen relatively little exploration in
the formal methods community. One exception is the work



of Stubblebine, Gligor, and Kailar on the guarantee of mes-
sage integrity protection in protocols [6, 14]. The problem
that they study, the ability of an intruder to create a rec-
ognizable message (instead of spoofing a particular one) is
slightly different than ours, but there is enough in common
so that many of their techniques may be applicable.

Finally, it might be useful to investigate the integration
of this model with more mathematically rigorous models
of cryptography. At present we have populated our type
function trees with relatively simplistic assumptions about
probability distributions related to random number genera-
tion, encryption, and so forth. This may be all that we need,
but it might be useful to see if applying any of the currently
available mathematical models of cryptography, or any of
the emerging techniques for wedding these with formal log-
ical models as in [11], would be of help here.

6 Acknowledgements

We are grateful to MSec and SMuG Working Groups,
and in particular to the authors for the GDOI protocol, for
many helpful discussions on this topic. We are also grateful
to the participants in the 2002 FCS Workshop for helpful
discussions on [10]. This work was supported by ONR.

References

[1] J. Alves-Foss. Provably insecure mutual authentica-
tion protocols: The two party symmetric encryption
case. InProc. 22nd National Information Systems Se-
curity Conference., Arlington, VA, 1999.

[2] M. Baugher, T. Hardjono, H. Harney, and B. Weis.
The group domain of interpretation. available at
http://www.watersprings.org/pub/

id/draft-irtf-smug-gdoi-01.txt , July 2001.

[3] S. Bellovin. Problem areas for the IP security proto-
cols. InProceedings of the Sixth Usenix UNIX Secu-
rity Symposium, San Jose, CA, 1996.

[4] D. Harkins and D. Carrel. The Internet Key
Exchange (IKE). RFC 2409, Internet Engineer-
ing Task FOrce, November 1998. available at
http://ietf.org/rfc/rfc2409.txt .

[5] J. Heather, G. Lowe, and S. Schneider. How to prevent
type flaw attacks on security protocols. InProc. of
13th IEEE Computer Security Foundations Workshop,
pages 255–268. IEEE Computer Society Press, 2000.

[6] R. Kailar, S. Stubblebine, and V. Gligor. Reason-
ing about message integrity. In F. Cristian, G. Le
Lann, and T. Lunt, editors,Dependable Computing for

Critical Applications 4, pages 41–53. Springer-Verlag,
1995.

[7] J. Kelsey and B. Schneier. Chosen interactions and the
chosen protocol attack. InSecurity Protocols, 5th In-
ternational Workshop April 1997 Proceedings, pages
91–104. Springer-Verlag, 1998.

[8] D. Maughan, M. Schertler, M. Schneider, and
J. Turner. Internet Security Association and Key
Management Protocol (ISAKMP). Request for
Comments 2408, Network Working Group, Novem-
ber 1998. Available athttp://ietf.org/rfc/

rfc2408.txt .

[9] C. Meadows. Analyzing the Needham-Schroeder pub-
lic key protocol: A comparison of two approaches. In
Proceedings of ESORICS ’96. Springer-Verlag, 1996.

[10] C. Meadows. Identifying potential type confusion in
authenticated messages. InWorkshop on Foundations
of Computer Security, Copenhagen, Denmark, 2002.
DIKU Technical Report 02/12.

[11] J.C. Mitchell, A. Ramanathan, A. Scedrov, and
V. Teague. A probabilistic polynomial-time cal-
culus for the analysis of cryptographic proto-
cols. submitted for publication, available on
line at http://theory.stanford.edu/people/

jcm/publications.htm , 2002.

[12] E. Snekkenes. Roles in cryptographic protocols.
In Proceedings of the 1992 IEEE Computer Secu-
rity Symposium on Research in Security and Privacy,
pages 105–119. IEEE Computer Society Press, 1992.

[13] S. Stubblebine and V. Gligor. On message integrity
in cryptographic protocols. InIEEE Computer Soci-
ety Symposium on Research in Security and Privacy,
pages 85–104. IEEE Computer Society Press, 1992.

[14] S. Stubblebine and V. Gligor. Protocol design and in-
tegrity protection. InProceedings of the 1993 Sym-
posium on Security and Privacy, pages 41–53. IEEE
Computer Society Press, 1993.

[15] S. Stubblebine and C. Meadows. Formal charac-
terization and automated analysis of known-pair and
chosen-text attacks.IEEE Journal on Selected Areas
on Communication, 18(4):571–581, April 2000.

[16] C. Meadows P. Syverson and I. Cervesato. Specifi-
cation and analysis of the Group Domain of Interpre-
tation Protocol using NPATRL and the NRL Protocol
Analyzer. Journal of Computer Security, to appear,
2003.




